Advances in Communications, Signal Processing, and VLSI Top-Down VLSI Design: From Architectures to Gate-Level Circuits and FPGAs represents a unique approach to learning digital design. Developed from more than 20 years teaching circuit design, Doctor Kaelin’s approach follows the natural VLSI design flow and makes circuit design accessible for professionals with a background in systems engineering or digital signal processing. It begins with hardware architecture and promotes a system-level view, first considering the type of intended application and letting that guide your design choices. Doctor Kaelin presents modern considerations for handling circuit complexity, throughput, and energy efficiency while preserving functionality. The book focuses on application-specific integrated circuits (ASICs), which along with FPGAs are increasingly used to develop products with applications in telecommunications, IT security, biomedical, automotive, and computer vision industries. Topics include field-programmable logic, algorithms, verification, modeling hardware, synchronous clocking, and more. Demonstrates a top-down approach to digital VLSI design. Provides a systematic overview of architecture optimization techniques. Features a chapter on field-programmable logic devices, their technologies and architectures. Includes checklists, hints, and warnings for various design situations. Emphasizes design flows that do not overlook important action items and which include alternative options when planning the development of microelectronic circuits.

High Performance VLSI Digital Signal Processing Architecture and Chip Design This textbook provides comprehensive coverage for courses in the basics of design and implementation of digital filters. The book assumes only basic knowledge in digital signal processing and covers state-of-the-art methods for digital filter design and provides a simple route for the readers to design their own filters. The advanced mathematics that is required for the filter design is minimized by providing an extensive MATLAB toolbox with over 300 files. The book presents over 200 design examples with MATLAB code and over 300 problems to be solved by the reader. The students can design and modify the code for their use. The book and the design examples cover almost all known design methods of frequency-selective digital filters as well as some of the authors’ own, unique techniques.

VLSI Systems Design for Digital Signal Processing Designing VLSI systems represents a challenging task. It is a transformation among different specifications corresponding to different levels of design: abstraction, behavioral, structural, and physical. The behavioral level describes the functionality of the design. It consists of two components: static and dynamic. The static component describes operations, whereas the dynamic component describes sequencing and timing. The structural level contains information about components, control and connectivity. The physical level describes the constraints that should be imposed on the floor plan, the placement of components, and the geometry of the design. Constraints of area, speed and power are also applied at this level. To implement such multilevel transformation, a design methodology should be devised, taking into consideration the constraints, limitations and properties of each level. The mapping process between any of these domains is non-isomorphic. A single behavioral component may be transformed into more than one structural component. Design methodologies are the most recent evolution in the design automation era, which started off with the introduction and subsequent usage of module generation especially for regular structures such as PLA’s and memories. A design methodology should offer an integrated design system rather than a set of separate unrelated routines and tools. A general outline of a desired integrated design system is as follows: * Decide on a certain unified framework for all design levels. * Derive a design method based on this framework. * Create a design environment to implement this design method.

Digital Signal Processing and Applications

VLSI Implementations for Digital Signal Processing Addresses a wide selection of multimedia applications, programmable and custom architectures for the implementations of multimedia systems, and arithmetic architectures and design methodologies. The book covers recent applications of digital signal processing algorithms in multimedia, presents high-speed and low-priority binary and finite field arithmetic architectures, details VHDL-based implementation approaches, and more.

VLSI Systems Design for Digital Signal Processing This book is the first in a set of forthcoming books focussed on state-of-the-art development in the VLSI Signal Processing area. It is a response to the tremendous research activities taking place in that field. These activities have been driven by two factors: the dramatic increase in demand for high speed signal processing, especially in consumer electronics, and the evolving microelectronic technologies. The available technology has always been one of the main factors in determining algorithms, architectures, and design
strategies to be followed. With every new technology, signal processing systems go through many changes in concepts, design methods, and implementation. The goal of this book is to introduce the reader to the main features of VLSI Signal Processing and the ongoing developments in this area. The focus of this book is on: • Current developments in Digital Signal Processing (DSP) processors and architectures - several examples and case studies of existing DSP chips are discussed in Chapter 1. • Features and requirements of image and video signal processing architectures - both applications specific integrated circuits (ASICs) and programmable image processors are studied in Chapter 2. • New market areas for signal processing - especially in consumer electronics such as multimedia, teleconferencing, and movie on demand. • Impact of arithmetic circuitry on the performance of DSP processors - several topics are discussed in Chapter 3 such as: number representation, arithmetic algorithms and circuits, and implementation.

DSP Integrated Circuits This volume on implementation techniques in digital signal processing systems clearly reveals the significance and power of the techniques that are available, and with further development, the essential role they will play as applied to a wide variety of areas. The authors are all to highly commended for their splendid contributions to this volume, which will provide a significant and unique international reference source for students, research workers, practicing engineers, and others to come.

Digital Design of Signal Processing Systems Digital audio, speech recognition, cable modems, radar, high-definition television—these are but a few of the modern computer and communications applications relying on digital signal processing (DSP) and the attendant application-specific integrated circuits (ASICs). As information-age industries constantly reinvent ASIC chips for lower power consumption and higher efficiency, there is a growing need for designers who are current and fluent in VLSI design methodologies for DSP. Enter VLSI Digital Signal Processing Systems—a unique, comprehensive guide to performance optimization techniques in VLSI signal processing. Based on Keshab Parhi's highly respected and popular graduate-level courses, this volume is destined to become the standard text and reference in the field. This text integrates VLSI architecture theory and algorithms, addresses various architectures at the implementation level, and presents several approaches to analysis, estimation, and reduction of power consumption. Throughout this book, Dr. Parhi explains how to design high-speed, low-area, and low-power VLSI systems for a broad range of DSP applications. He covers pipelining extensively as well as numerous other techniques, from parallel processing to scaling and roundoff noise computation. Readers are shown how to apply all techniques to improve implementations of several DSP algorithms, using both ASICs and off-the-shelf programmable digital signal processors. The book features hundreds of graphs illustrating the various DSP algorithms, examples based on digital filters and transforms clarifying key concepts, and interesting end-of-chapter exercises that help match techniques with applications. In addition, the abundance of readily available techniques makes this an extremely useful resource for designers of DSP systems in wired, wireless, or multimedia communications. The material can be easily adopted in new courses on either VLSI digital signal processing architectures or high-performance VLSI system design. An invaluable reference and practical guide to VLSI digital signal processing. A tremendous source of optimization techniques indispensable in modern VLSI signal processing, VLSI Digital Signal Processing Systems promises to become the standard in the field. It offers a rich training ground for students of VLSI design for digital signal processing and provides immediate access to state-of-the-art, proven techniques for designers of DSP applications in wired, wireless, or multimedia communications. Topics include: * Transformations for high speed using pipelining, retiming, and parallel processing techniques * Power reduction transformations for supply voltage reduction as well as for strength or capacitance reduction * A rea reduction using folding techniques * Strategies for arithmetic implementation * Synchronous, wave, and asynchronous pipelining * Design of programmable DSPs. An Instructor's Manual presenting detailed solutions to all the problems in the book is available from the Wiley editorial department.

VLSI systems design for digital signal processing This is the only book that offers a thorough treatment of the following: design and application of programmable digital signal processors; formal specification and optimization of signal processing architectures and circuits; high-level synthesis of DSP architectures and datapaths; detailed treatment of application-specific integrated circuits (ASICs); scheduling, allocation and assignment algorithms for multiple processor DSP systems; and hardware/software co-design issues in DSP. VLSI Digital Signal Processors: An Introduction to Rapid Prototyping and Design Synthesis provides a cohesive, quantitative and clear exposition of the implementation and prototyping of digital signal processing algorithms on programmable signal processors, parallel processing systems and application-specific ICs. Included are both programmable and dedicated digital signal processors, and discussions of the latest optimization methods and the use of computer-aided-design techniques.

Signal Processing in Radar Systems

VLSI Digital Signal Processors This book presents a distributed multiprocessor architecture that is faster, more versatile, and more reliable than traditional single-processor architectures. It also describes a simulation technique that provides a highly accurate means for building a prototype system in software. The system prototype is studied and analyzed using such DSP applications as digital filtering and fast Fourier transforms. The code is included as well, which allows others to build software prototypes for their own research systems. The design presented in Microprocessor-Based Parallel Architecture for Reliable Digital Signal Processing Systems introduces the concept of a dual-mode architecture that allows users a dynamic choice between either a conventional or fault-tolerant system as application requirements dictate. This volume is a “must have” for all professionals in digital signal processing, parallel and distributed computer architecture, and fault-tolerant computing.

VLSI Signal Processing Technology

VLSI Systems Design for Digital Signal Processing: Systems design

Microprocessor-Based Parallel Architecture for Reliable Digital Signal Processing Systems Over the past few years, the demand for high speed Digital Signal Processing (DSP) has increased dramatically. New applications in real-time image processing, satellite communications, radar signal processing, pattern recognition, and real-time signal detection and estimation require major
improvements at several levels; algorithmic, architectural, and implementation. These performance requirements can be achieved by employing parallel processing at all levels. Very Large Scale Integration (VLSI) technology supports and provides a good avenue for parallelism. Parallelism offers efficient solutions to several problems which can arise in VLSI DSP architectures such as: 1. Intermediate data communication and routing; several DSP algorithms, such as FFT, involve excessive data routing and reordering. Parallelism is an efficient mechanism to minimize the silicon cost and speed up the processing time of the intermediate middle stages. 2. Complex DSP applications: the required computation is almost doubled. Parallelism will allow two similar channels processing at the same time. The communication between the two channels has to be minimized. 3. Application-specific systems: this emerging approach should achieve real-time performance in a cost-effective way. 4. Testability and fault tolerance: reliability has become a required feature in most of DSP systems. To achieve such property, the involved time overhead is significant. Parallelism may be the solution to maintain acceptable speed performance.

Digital Signal Processors Field programmable gate arrays (FPGAs) are an increasingly popular technology for implementing digital signal processing (DSP) systems. By allowing designers to create circuit architectures developed for the specific applications, high levels of performance can be achieved for many DSP applications providing considerable improvements over conventional microprocessor and dedicated DSP processor solutions. The book addresses the key issue in this process specifically, the methods and tools needed for the design, optimization and implementation of DSP systems in programmable FPGA hardware. It presents a review of the leading-edge techniques in this field, analyzing advanced DSP-based design flows for both signal flow graphs and dataflow-based implementation, system on chip (SoC) aspects, and future trends and challenges for FPGAs. The automation of the techniques for component architectural synthesis, computational models, and the reduction of energy consumption to help improve FPGA performance, are given in detail. Written from a system level design perspective and with a DSP focus, the authors present many practical application examples of complex DSP implementation, involving: high-performance computing e.g. matrix operations such as matrix multiplication; high-speed filtering including finite impulse response (FIR) filters and wave digital filters (WDFs); adaptive filtering e.g. recursive least squares (RLS) filtering; transforms such as the fast Fourier transform (FFT). FPGA-based Implementation of Signal Processing Systems is an important reference for practising engineers and researchers working on the design and development of DSP systems for radio, telecommunication, information, audio-visual and security applications. Senior level electrical and computer engineering graduates taking courses in signal processing or digital signal processing shall also find this volume of interest.

Digital Signal Processing: DSP and Applications

VLSI Systems Design for Digital Signal Processing, Vol. 1

VLSI Design Methodologies for Digital Signal Processing Architectures It is a great honor to provide an introduction for Dr. Frank Op ‘t Eynde’s and Dr. Willy Sansen’s book “Analog Interfaces for Digital Signal Processing Systems”. The field of analog integrated circuit design is undergoing rapid evolution. The pervasiveness of digital processing has considerably modified the micro-system architectures: the analog part of complex mixed systems is more and more pushed at the boundaries of the processing chain. Moreover, the increased performance of digital circuits, in terms of accuracy and speed, are making the specification requirements of analog circuits very strict. In addition to this, the technology, supply voltage and power consumption of analog circuits must be compatible with those, typical for digital circuits. Therefore, in a few words, analog circuits are becoming complex and specialised interfaces between the real world and digital signal processing domains. This technological evolution should be accompanied by an equivalently fast evolution in designer competencies. Knowledge of complicated signal handling should be quickly replaced by know-how of simple but very accurate and very fast signal processing and a solid background in data conversion techniques. All of this through the use of the CMOS (and possibly BiCMOS) technology.


Digital Signal Processing Systems: Implementation Techniques

VLSI???????? The main objective of our research is the study of new algorithms and implementations suitable for VLSI. A primary assumption in this research is that algorithms must match the available computational resources in order to obtain efficient algorithms. The starting point is not the algorithm for a specific class of digital processing problems; the starting point is the resource available for computing. The characteristics of this resource dictate what will be effective and efficient. VLSI technology presents digital signal processing with a unique environment with special qualities not heretofore used in computation. Each class of processing problems coupled with VLSI technology requires new algorithms for effective use of VLSI chips. Thus, our research has considered several classes of problems and various algorithms for each class. We have also considered certain theoretical problems associated with the representation of processing systems. The reason alternate representations are important is that they suggest new and more general methods of unifying different processing tasks.
DIGITAL SIGNAL PROCESSORS This book is a uniquely practical DSP text which places the emphasis on understanding the principles and applications of DSP with a minimum of mathematics. In one volume, it covers a broad area of digital signal processing systems such as A/D and D/A converters, adaptive filters, spectral estimation, neural networks, Kalman filters, fuzzy logic, data compression, error correction and DSP programming. Many courses will find that this book will replace several texts currently in use. The level is ideal for introductory university modules, and similar courses such as HNC/D. As DSP has come to be studied at a lower academic level over recent years this text meets a genuine need. It is also suitable for use on industrial training courses and ideal as a reference text for professionals. A readable introduction to the practical application of DSP Broad coverage of the subject means this will cover a typical undergraduate module in just one book Practical focus with maths treated as a practical tool - not an advanced maths text

Parallel Algorithms and Architectures for DSP Applications

Analog Interfaces for Digital Signal Processing Systems

VLSI Systems Design for Digital Signal Processing It gives me immense pleasure to introduce this timely handbook to the research-development communities in the field of signal processing systems (SPS). This is the 7th of its kind and represents state-of-the-arts coverage of research in this field. The driving force behind information technologies (IT) hinges critically upon the major advances in both component integration and system integration. The major breakthrough for the former is undoubtedly the invention of IC in the 50's by Jack S. Kilby, the Nobel Prize Laureate in Physics 2000. In an integrated circuit, all components were made of the same semiconductor material. Beginning with the pocket calculator in 1964, there have been many increasingly complex applications followed. In fact, processing gates and memory storage on a chip have since then grown at an exponential rate, following Moore's Law. (M oore himself admitted that Moore's Law had turned out to be more accurate, longer lasting and deeper in impact than he ever imagined.) With greater device integration, various signal processing systems have been realized for many killer IT applications. Further breakthroughs in computer sciences and Internet technologies have also catalyzed large-scale system integration. All these have led to today's IT revolution which has profound impacts on our lifestyle and overall prospect of humanity. (It is hard to imagine life today without mobiles or Internets!) The success of SPS requires a well-concerted integrated approach from multi-disciplines, such as device, design, and application.

VLSI Systems for Digital Signal Processing Digital signal processing lies at the heart of the communications revolution and is an essential element of key technologies such as mobile phones and the Internet. This book covers all the major topics in digital signal processing (DSP) design and analysis, supported by MATLAB examples and other modeling techniques. The authors explain clearly and concisely why and how to use digital signal processing systems; how to approximate a desired transfer function characteristic using polynomials and ratio of polynomials; why an appropriate mapping of a transfer function on to a suitable structure is important for practical applications; and how to analyse, represent and explore the trade-off between time and frequency representation of signals. An ideal textbook for students, it will also be a useful reference for engineers working on the development of signal processing systems.

VLSI Implementation of Digital Signal Processing Algorithms for Multi-Objective Systems

VLSI Systems Design for Digital Signal Processing Digital Signal Processing of Signal Processing Systems discusses a spectrum of architectures and methods for effective implementation of algorithms in hardware (HW). Encompassing all facets of the subject this book includes computational algorithms from floating-point to fixed-point format, parallel architectures for basic computational blocks, Verilog Hardware Description Language (HDL), SystemVerilog and coding guidelines for synthesis. The book also covers system level design of Multi Processor System on Chip (MPSoC); a consideration of different design methodologies including Network on Chip (NoC) and Kahn Process Network (KPN) based connectivity among processing elements. A special emphasis is placed on implementing streaming applications like a digital communication system in HW. Several novel architectures for implementing commonly used algorithms in signal processing are also revealed. With a comprehensive coverage of topics the book provides an appropriate mix of examples to illustrate the design methodology. Key Features: A practical guide to designing efficient digital systems, covering the complete spectrum of digital design from a digital signal processing perspective Provides a full account of HW building blocks and their architectures, while also elaborating effective use of embedded computational resources such as multipliers, adders and memories in FPGAs Covers a system level architecture using NoC and KPN for streaming applications, giving examples of structuring MATLAB code and its easy mapping in HW for these applications Explains state machine based and Micro-Program architectures with comprehensive case studies for mapping complex applications The techniques and examples discussed in this book are used in the award winning products from the Center for Advanced Research in Engineering (CARE).

Software Defined Radio, 10 Gigabit VoIP monitoring system and Digital Surveillance equipment has respectively won APICTA (Asia Pacific Information and Communication Alliance) awards in 2010 for their unique and effective designs.

Digital Filters Using MATLAB Part I: RF System Integration. 1. RF System Integration; C. Tsoumazou. 2. RF System Board Level Integration for Mobile Phones; G.J. Aspin. 3. Integration of RF Systems on a Chip; P.J. Mole. 4. Towards the Full Integration of Wireless Front-End Circuits; M. Steyaert. 5. GSM Transceiver Front-End Circuits in 0.25 µm CMOS; Q. Huang, et al. Part II: RF Front-End Circuits. 6. RF Front-End Circuits; Q. Huang. 7. Phase-Noise-to-Carrier Ratio in LC Oscillators; Q. Huang. 8. Design Study of a 900 MHz/1.8 GHz CMOS Transceiver for Dual-Band Applications; B. Razavi. 9. Integrated Wireless Transc.

VLSI Digital Signal Processing Systems This book comprises the peer-reviewed proceedings of the International Conference on Communications, Signal Processing and VLSI (IC2SV) 2019. It explores the recent advances in the fields of signal and image processing, wireless and mobile communications, embedded systems, VLSI, microwave, and antennas. The contents provide insights into present technological challenges and discusses the emerging applications of different imaging techniques and communications systems. Given the range of topics covered, this book can be useful for students as well as researchers interested in the area of communications, signal processing, and VLSI technologies.
FGA-based implementation of Signal Processing Systems A essential task in radar systems is to find an appropriate solution to the problems related to robust signal processing and the definition of signal parameters. Signal Processing in Radar Systems addresses robust signal processing problems in complex radar systems and digital signal processing subsystems. It also tackles the important issue of defining signal parameters. The book presents problems related to traditional methods of synthesis and analysis of the main digital signal processing operations. It also examines problems related to modern methods of robust signal processing in noise, with a focus on the generalized approach to signal processing in noise under coherent filtering. In addition, the book puts forth a new problem statement and new methods to solve problems of adaptation and control by functioning processes. Taking a systems approach to designing complex radar systems, it offers readers guidance in solving optimization problems. Organized into three parts, the book first discusses the main design principles of the modern robust digital signal processing algorithms used in complex radar systems. The second part covers the main principles of computer system design for these algorithms and provides real-world examples of systems. The third part deals with experimental measurements of the main statistical parameters of stochastic processes. It also defines their estimations for robust signal processing in complex radar systems. Written by an internationally recognized professor and expert in signal processing, this book summarizes investigations carried out over the past 30 years. It supplies practitioners, researchers, and students with general principles for designing the robust digital signal processing algorithms employed by complex radar systems.

VLSI Systems Design for Digital Signal Processing: Signal processing and signal processors

Digital Signal Processing for Multimedia Systems

Circuits and Systems for Wireless Communications Overview: The text provides a thorough understanding of the architecture and programming of Digital Signal Processors. It blends the concepts of digital signal processing with its applications on systems using digital signal processors. This revised edition offers an enhanced coverage of TMS320C6X series of processors and FPGA based system design-emerging trends of Digital Signal Processors. Features: New chapters on TMS320C6X Assembly Language Instructions Application Programs of TMS55X, FPGA's and their Application /Discusses a wide variety of Texas Instruments (TI) Digital Signal Processors including C3X, C5X, C563X X and C53X /A Application of the CODE COMPOSER STUDIO software for design & testing of DSP based systems

Joint Special Issue on VLSI A nalog and Digital Signal Processing DSP Integrated Circuits establishes the essential interface between theory of digital signal processing algorithms and their implementation in full-custom CMOS technology. With an emphasis on techniques for co-design of DSP algorithms and hardware in order to achieve high performance in terms of throughput, low power consumption, and design effort, this book provides the professional engineer, researcher, and student with a firm foundation in the theoretical as well as the practical aspects of designing high performance DSP integrated circuits. Centered around three design case studies, DSP Integrated Circuits thoroughly details a high-performance FFT processor, a 2-D Discrete Cosine Transform for HDTV, and a wave digital filter for interpolation of the sampling frequency. The case studies cover the essential parts of the design process in a top-down manner, from specification of algorithm design and optimization, scheduling of operations, synthesis of optimal architectures, realization of processing elements, to the floor-planning of the integrated circuit. Details the theory and design of digital filters - particularly wave digital filters, multi-rate digital filters, fast Fourier transforms (FFT's), and discrete cosine transforms (DCT's) - Sources complete "real-world" case studies throughout the book Provides complete coverage of finite word length effects in DSP algorithms and their mapping to optimal architectures /Discusses a wide variety of Texas Instruments (TI) Digital Signal Processors including C3X, C5X, C563X X and C53X /Application of the CODE COMPOSER STUDIO software for design & testing of DSP based systems

Top-Down Digital VLSI Design

Streamlining Digital Signal Processing

Digital Signal Processing

Handbook of Signal Processing Systems

VLSI Systems Design for Digital Signal Processing A uniquely practical DSP text, this book gives a thorough understanding of the principles and applications of DSP with a minimum of mathematics, and provides the reader with an introduction to DSP applications in telecoms, control engineering and measurement and data analysis systems. The new edition contains: Expanded coverage of the basic concepts to aid understanding with new sections on filter synthesis, control theory and contemporary topics of speech and image recognition Full solutions to all questions and exercises in the book Assuming the reader already has some prior knowledge of signal theory, this textbook will be highly suitable for undergraduate and postgraduate students in electrical and electronic engineering taking introductory and advanced courses in DSP, as well as courses in communications and control systems engineering. It will also prove an invaluable introduction to DSP and its applications for the professional engineer. Expanded coverage of the basic concepts to aid understanding, along with a wide range of DSP applications New textbook features included throughout, including learning objectives, summary sections, exercises and worked examples to increase accessibility of the text Full solutions to all questions and exercises included in the book

Copyright code: 3cc538d8d41e76650da872a71138625e